当前位置: 首页 / 技术干货 / 正文
好程序员分享大数据培训:Hadoop和spark的性能比较

2020-06-17

大数据培训 好程序员

  好程序员分享大数据培训分享Hadoopspark的性能比较大数据课程,一门看似很专业实际很复杂的学科,备受追捧。因为大数据的就业前景真的很诱惑人,单单是就业薪资就能让人趋之若鹜。今天大数据讲师给大家分享的技术知识是大数据入门课程之Hadoopspark的性能比较。

大数据2

  曾经看过一个非常有趣的比喻,Hadoop是一家大型包工队,可以组织一大堆人合作(HDFS)搬砖盖房(MapReduce),但是速度比较慢。

  Spark是另一家包工队,虽然成立得晚一些,但是他们搬砖很快很灵活,可以实时交互地盖房子,比Hadoop快得多。

  Hadoop开始升级,指定调度专家YARN调度工人。Spark从多个仓库搬砖(HDFSCassandra,S3HBase),还允许不同专家如YARN/ MESOS对人员和任务进行调度。

  当然,他们两家并不是水火不容。Spark经常和Hadoop团队合作,这让问题变得更加复杂。不管怎么说,SparkHadoop都是两个独立的包工队,都有着各自的优缺点和特定的业务用例。

  Hadoopspark的性能比较

  Spark在内存中运行速度比Hadoop100倍,在磁盘上运行速度快10倍。众所周知,Spark在数量只有十分之一的机器上,对100TB数据进行排序的速度比Hadoop MapReduce3倍。此外,Spark在机器学习应用中的速度同样更快,例如Naive Bayesk-means

  由处理速度衡量的Spark性能之所以比Hadoop更优,原因如下:

  1、每次运行MapReduce任务时,Spark都不会受到输入输出的限制。事实证明,应用程序的速度要快得多。

  2SparkDAG可以在各个步骤之间进行优化。HadoopMapReduce步骤之间没有任何周期性连接,这意味着在该级别不会发生性能调整。

  但是,如果Spark与其他共享服务在YARN上运行,则性能可能会降低并导致RAM开销内存泄漏。出于这个原因,如果用户有批处理的诉求,Hadoop被认为是更高效的系统。

  文章写到这也该结束了,如果你对这篇文章感到意犹未尽,对大数据感兴趣,欢迎大家一起交流学习。

好程序员开班动态

More+
  • HTML5大前端 <高端班>

    开班时间:2020-02-17(北京)

    开班盛况

    开班时间:2020-03-02(深圳)

    开班盛况
  • 大数据+人工智能 <好程序员严选班>

    开班时间:2019-12-23(北京)

    开班盛况
  • 大数据+人工智能 <好程序员班>

    开班时间:2020-02-24(杭州)

    开班盛况

    开班时间:2020-02-17(北京)

    开班盛况
  • JavaEE分布式开发 <高端班>

    开班时间:2020-03-09(北京)

    开班盛况
  • Python全栈+人工智能 <高端班>

    开班时间:2019-07-22(北京)

    开班盛况
  • 云计算开发 <高端班>

    开班时间:2020-02-24(北京)

    开班盛况
在线咨询
免费试听
入学教程
立即报名

Copyright 2011-2020 北京千锋互联科技有限公司 .All Right 京ICP备12003911号-5 京公安网11010802011455号